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< A Simple Framework for Contrastive Leaming of Visual Representations (ICML, 2020)
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«  Contrastive Visual Representation Leaming & £/ M2 Framework SimCLR X0t

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen! Simon Kornblith! Mohammad Norouzi' Geoffrey Hinton !
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Abstract %Supervised *SIimCLR (4x)
- 75
This paper presents SimCLR: a simple framework E) *SImCLR (2x)
for contrastive learning of visual representations. a eCPCv2-L
We simplify recently proposed contrastive self- g 70F simCLR «CMC JMoCo (4x)
supervised learning algorithms without requiring 2 *PIRL-c2x AMDIM
specialized architectures or a memory bank. In T B5 RPIRL-En;MOCD (@x)
) L & §CPCv2 .
order to understand what enables the contrastive 2 PIRL o
prediction tasks to learn useful representations, % go} §MoCo sBigBiGAN
we systematically study the major components of % LA
g::af;zmcwm:k: W:.: sholv.v tha.t_{ I‘} composition of E g5 . aFatation
gmentations plays a critical role in defining elnstDisc
effective predictive tasks, (2) introducing a learn-

able nonlinear transformation between the repre-
sentation and the contrastive loss substantially im-
proves the quality of the learned representations,
and (3) contrastive learning benefits from larger
batch sizes and more training steps compared to
supervised learning. By combining these findings,
we are able to considerably outperform previous
methods for self-supervised and semi-supervised
learning on ImageNet. A linear classifier trained
on self-supervised representations learned by Sim-
CLR achieves 76.5% top-1 accuracy, which is a
7% relative improvement over previous state-of-
the-art, matching the performance of a supervised
ResNet-50. When fine-tuned on only 1% of the
labels, we achieve 85.8% top-5 accuracy, outper-
forming AlexNet with 100 fewer labels. |

e ke w
25 50 100 200 400

Mumber of Parameters (Millions)

Figure 1. ImageNet Top-1 accuracy of linear classifiers trained
on representations learned with different self-supervised meth-
ods (pretrained on ImageNet). Gray cross indicates supervised
ResNet-50. Our method, SimCLR, is shown in bold.

However, pixel-level generation is computationally expen-
sive and may not be necessary for representation learning.
Discriminative approaches learn representations using objec-
tive functions similar to those used for supervised learning,
but train networks to perform pretext tasks where both the in-
puts and labels are derived from an unlabeled dataset. Many
such approaches have relied on heuristics to design pretext
tasks (Doersch et al., 2015; Zhang et al., 2016; Noroozi &
Favaro, 2016; Gidaris et al., 2018), which could limit the
generality of the learned representations. Discriminative
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A Simple Framework for Contrastive Leaming of Visual Representations
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A Simple Framework for Contrastive Leaming of Visual Representations
« LC[2F5tData Augmentation 7 |1 22 (Random Crop + Color Distortion)
712 Embedding Layers & 2 Batch Size
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A Simple Framework for Contrastive Leaming of Visual Representations
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* Hard Negative Sample
*  Anchor 2} CI= Label : True Negative
«  Anchor 2}t Ct2 Label & Anchor 2t SAFSHEX! : Hard Negative
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% Contrastive Leaming With Hard Negative Samples (ICLR, 2021)
. 20228 112 7R 2288101
«  AREZAP| Hardness S A[02 <+~ Q= Hard Negative Samples A1ES $ot B = X0t

CONTRASTIVE LEARNING WITH
HARD NEGATIVE SAMPLES

Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, Stefanie Jegelka
Massachusetts [nstitute of Technology
Cambridge. MA_ USA

[ jeshrob, cychuang, suvrit, stefjel@mit.edn

ABSTRACT

How can you sample good negative examples for contrastive leaming? We argue
that, as with metric leaming, contrastive leaming of representations benefits from
hard negative samples (i.e., points that are difficult to distinguizsh from an anchor
point). The key challenge toward using hard negatives is that contrastive methods
must remain unsupervised, making it infeasible to adopt existing negative sampling
strategies that use srue similarity information. In response, we develop a new
family of unsupervised sampling methods for selecting hard negative samples
where the user can control the hardness. A limiting case of this sampling results in
a representation that tightly clusters each class, and pushes different classes as far
dpart as possible. The proposad method improves downstream performancs across
multiple modalities, requires only few additional lines of code to implement, and
introduces no computational overhead.
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% Contrastive Leaming With Hard Negative Samples (ICLR, 2021)
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% What Makes A Good Negative Sample?
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% Sampling Negatives From The Distribution q;

*  Principal 1) Anchor x 2t Ct2 Label 2 7FXI= True Negatives x;” &

« =ZH: Embedding f2F Anchor x 0f| (2 y 2| 2 q 24|, g HA] Negative Batch Sampling

qp(x7) = qg(x™ |h(x) # h(X™)) where qs(x™) o« /@D . p(x7), for f = 0

x,x~ 7} C}2 Latent Class £ 7Kl =A
Principal 1 21
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% Sampling Negatives From The Distribution q;

*  Principal 2) 7 }& @25t Negative Sample £ Embedding Space 7} $4&l| Anchor 2t SAFGICHT 2= 74
« =ZH: Embedding f2F Anchor x 0f| (2 y 2| 2 q 24|, g HA] Negative Batch Sampling

qp(x7) = qg(x~ |h(x) # h(X™)) where qp(x™) o« /@D . p(x7), for f = 0

[3: concentration parameter OAE: Inner Produdts D
Anchor X 2F AT | =2 x~ MEtiSH= " - f 7HIKIE 1/t Q1 Hypersphere HHO|E 2,
Principal 2 2= 2 Inner Product =2 Euclidean 712
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< Sampling Negatives From The Distribution g
*  Principal 1) Anchor x 2t CtE Label 2 7FX|= True Negatives x;” &=
*  Principal 2) 7 .83t Negative Sample = Embedding Space 7t S4XH Anchor 2t SAfICHT 2= 24
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< Sampling Negatives From The Distribution g

T-=2t Distribution g 0l PU-Leaming Viewpoint M 2, 4] (1) 7% (h(x) = h(x")=U 25)
*  Importance Sampling B2

Hi_Hd

M8 Rejection Sampling = AR 715 3112 Sampling Batches 7 BISIEI0] 2412150 SHEHE]
* Negative Sampling Distribution g il Cioli 21(2) = Had 7ts

qﬁ(x‘) = T qg (x7) + r+q;§ (x7) ,where qp(x™) x eBf@ & (%), for =0

qg(x7) = (qg(x™) —ttqp(x7)) /1"
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% Conditional Negative Sampling For Contrastive Leaming Of Visual Representations (2020)
. 20224 N IE 328|918

»  Positive Samples 2t 7 FZIX|2t, L4727 FZAT= 252 Negatives M1EHS 2/t Ring Model X2t

FII‘

CONDITIONAL NEGATIVE SAMPLING FOR (CON-
TRASTIVE LEARNING OF VISUAL REPRESENTATIONS

Mike Wu!, Milan Mosse'*, Chengxu Zhuang?, Daniel Yamins'+*, Noah Goodman'-*
Department of Computer Science!, Psychology?®. and Philosophy*

ISIanford University

{wumike, chengxuz, mmosseld, yamins, ngoodman}@stanford.edu

ABSTRACT

Recent methods for learning unsupervised visual representations, dubbed con-
trastive learmning, optimize the noise-contrastive estimation (NCE) bound on mu-
tual information between two views of an image. NCE uses randomly sampled
negative examples to normalize the objective. In this paper, we show that choosing
difficult negatives. or those more similar to the current instance, can yield stronger
representations. To do this, we introduce a family of mutual information estima-
tors that sample negatives conditionally — in a “ring” around each positive. We
prove that these estimators lower-bound mutual information, with higher bias but
lower variance than NCE. Experimentally, we find our approach, applied on top of
existing models (IR, CMC, and MoCo) improves accuracy by 2-3% points in each
case, measured by linear evaluation on four standard 1mage datasets. Moreover,
we find continued benefits when transferring features to a variety of new image
distributions from the Meta-Dataset collection and to a variety of downstream
tasks such as object detection, instance segmentation, and keypoint detection.
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% Conditional Negative Sampling For Contrastive Leaming Of Visual Representations (2020)
« 7P Negatives £ Z MEHGIH =2 Quality 2| Representations 815 7ts
« LIFE CHE Class 2f +1=0k= A 2L LIS QoM B2 4=20k= 0| E 0243

v Granular & Semantic Information 0] 2= ZIQ
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*» Noise-Contrastive Estimation (NCE)
* NCE: Positive & 7F27|, Negative = 2| X[} Sli= Representations & Loss
«  NCE 0f|A Negative Examples = Marginal Distribution 22 124 i.id 51| AZ2!  independently and identically distributed
v’ Z2 Representation 2 55517 | /5t £M2] Negative Samples AEH HiEHS O
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+ Conditional Noise Contrastive Estimator (CNCE) im0 o Ctst percentile 412t (w,, w,)
*  Representation 0] Anchor} 0H FABHA Positive 2 2= E|X| 4= A (not too hard)

*  Anchor 2+ X6 | RAISHEXS 7HK|= A (not too easy)
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+ Conditional Noise Contrastive Estimator (CNCE) im0 o Ctst percentile 412t (w,, w,)
Representation 0| Anchor®} D1 SABHA] Positive 2 2F=|X| &= A (ot too hard)

Anchor 2t HF5| FARHEES 7HKI= A (not too easy)
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% Annealing Policy
*  Representations 7t & L=&|X| 22 Z=710f| Ring 22 Poor Representation O}/ |

« SEEIPH0IM Sp2| 37|12 E047 = Annealing Policy AE2 Annealing Thresholds 7} iR Z2
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